p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.18D4, C23⋊C8⋊8C2, C4⋊C4.21D4, (C2×D4).22D4, (C2×Q8).22D4, (C22×C4).19D4, C23.535(C2×D4), C22.SD16⋊9C2, C2.11(D4⋊4D4), C23.4Q8⋊2C2, C22.27(C4○D8), C23.48D4⋊3C2, C4⋊D4.16C22, C22⋊C8.10C22, (C22×C4).24C23, C22⋊Q8.16C22, C22.145C22≀C2, C2.11(D4.7D4), C23.46D4⋊27C2, C23.31D4⋊16C2, C22.32C24.3C2, C2.15(C23.7D4), C22.17(C8.C22), C2.C42.30C22, (C2×C4).213(C2×D4), (C2×C4⋊C4).28C22, (C2×C22⋊C4).101C22, SmallGroup(128,350)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.18D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=c, f2=dc=cd, eae-1=ab=ba, ac=ca, ad=da, faf-1=abc, bc=cb, ebe-1=bd=db, bf=fb, ce=ec, cf=fc, de=ed, df=fd, fef-1=de3 >
Subgroups: 316 in 120 conjugacy classes, 32 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C24, C2.C42, C22⋊C8, D4⋊C4, Q8⋊C4, C4.Q8, C2.D8, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C4×D4, C22≀C2, C4⋊D4, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42⋊2C2, C23⋊C8, C22.SD16, C23.31D4, C23.4Q8, C23.46D4, C23.48D4, C22.32C24, C24.18D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C22≀C2, C4○D8, C8.C22, D4.7D4, D4⋊4D4, C23.7D4, C24.18D4
Character table of C24.18D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | -2 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 0 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√-2 | -√2 | √-2 | complex lifted from C4○D8 |
ρ16 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √-2 | -√2 | -√-2 | complex lifted from C4○D8 |
ρ17 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√-2 | √2 | √-2 | complex lifted from C4○D8 |
ρ18 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √-2 | √2 | -√-2 | complex lifted from C4○D8 |
ρ19 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊4D4 |
ρ20 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊4D4 |
ρ21 | 4 | 4 | -4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ22 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | 0 | 0 | 0 | complex lifted from C23.7D4 |
ρ23 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | 0 | 0 | 0 | complex lifted from C23.7D4 |
(3 25)(4 26)(7 29)(8 30)(9 13)(10 14)(11 24)(12 17)(15 20)(16 21)(18 22)(19 23)
(2 32)(4 26)(6 28)(8 30)(10 19)(12 21)(14 23)(16 17)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 31)(2 32)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 18)(10 19)(11 20)(12 21)(13 22)(14 23)(15 24)(16 17)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 13 27 18)(2 17 28 12)(3 11 29 24)(4 23 30 10)(5 9 31 22)(6 21 32 16)(7 15 25 20)(8 19 26 14)
G:=sub<Sym(32)| (3,25)(4,26)(7,29)(8,30)(9,13)(10,14)(11,24)(12,17)(15,20)(16,21)(18,22)(19,23), (2,32)(4,26)(6,28)(8,30)(10,19)(12,21)(14,23)(16,17), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,18)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,17), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,13,27,18)(2,17,28,12)(3,11,29,24)(4,23,30,10)(5,9,31,22)(6,21,32,16)(7,15,25,20)(8,19,26,14)>;
G:=Group( (3,25)(4,26)(7,29)(8,30)(9,13)(10,14)(11,24)(12,17)(15,20)(16,21)(18,22)(19,23), (2,32)(4,26)(6,28)(8,30)(10,19)(12,21)(14,23)(16,17), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,18)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,17), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,13,27,18)(2,17,28,12)(3,11,29,24)(4,23,30,10)(5,9,31,22)(6,21,32,16)(7,15,25,20)(8,19,26,14) );
G=PermutationGroup([[(3,25),(4,26),(7,29),(8,30),(9,13),(10,14),(11,24),(12,17),(15,20),(16,21),(18,22),(19,23)], [(2,32),(4,26),(6,28),(8,30),(10,19),(12,21),(14,23),(16,17)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,31),(2,32),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,18),(10,19),(11,20),(12,21),(13,22),(14,23),(15,24),(16,17)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,13,27,18),(2,17,28,12),(3,11,29,24),(4,23,30,10),(5,9,31,22),(6,21,32,16),(7,15,25,20),(8,19,26,14)]])
Matrix representation of C24.18D4 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 13 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 13 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 16 | 0 |
0 | 0 | 4 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 0 | 0 | 2 |
0 | 0 | 1 | 0 | 16 | 4 |
0 | 0 | 6 | 0 | 0 | 1 |
0 | 0 | 11 | 16 | 0 | 4 |
0 | 8 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 2 | 0 | 0 |
0 | 0 | 1 | 4 | 0 | 0 |
0 | 0 | 6 | 1 | 1 | 0 |
0 | 0 | 11 | 4 | 0 | 16 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,13,0,13,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,4,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[2,0,0,0,0,0,0,8,0,0,0,0,0,0,13,1,6,11,0,0,0,0,0,16,0,0,0,16,0,0,0,0,2,4,1,4],[0,2,0,0,0,0,8,0,0,0,0,0,0,0,13,1,6,11,0,0,2,4,1,4,0,0,0,0,1,0,0,0,0,0,0,16] >;
C24.18D4 in GAP, Magma, Sage, TeX
C_2^4._{18}D_4
% in TeX
G:=Group("C2^4.18D4");
// GroupNames label
G:=SmallGroup(128,350);
// by ID
G=gap.SmallGroup(128,350);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,672,141,422,520,1123,570,521,136,1411]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=c,f^2=d*c=c*d,e*a*e^-1=a*b=b*a,a*c=c*a,a*d=d*a,f*a*f^-1=a*b*c,b*c=c*b,e*b*e^-1=b*d=d*b,b*f=f*b,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=d*e^3>;
// generators/relations
Export